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Predict Network Performance Path-level Decomposition m3’s fast path-level simulation using ML
N . :
« Data center network operators need to predict the impact of design \Q - m3 decomposes the network topology into independent paths, m
choices on network performance (e.g., tail latency, throughput, etc) predicts performance on sampled paths, aggregates results
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Workload J Background flows * m3 uses ML to correct flowSim, “translating” between flowSim
and ns-3’s output
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: S : e @Goal: for each path-level simulation, m3 estimates the flow
 Recent work on fast simulation: DeepQueueNet, Parsimon, ... P \

completion time (FCT) distribution of the foreground flows \Q - General principle: use a simple reference system to extract features

* All are packet-level simulators -> slow for large-scale networks especially to learn a model of a complex system

 Benefits: Path-level sims. are easier to learn & enable parallelism,

as the networks become larger and faster yet produce accurate estimates of network-wide behavior

Abstract network simulator as a function Workload Featurization Results

N

\Q -~ m3 uses ML to estimate the path-level perf. quickly and uses a Extensive simulation

 Learn a model approximating the simulator function mapping a network

scenario to aggregate performance statistics e Various production workloads based on Meta’s data center network

flow-level simulator to extract compact features for its ML models
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* Example: network tail latency Baseline: Parsimon

* flowSim: max-min flow-level simulation
Network topology/config * Fast: <1 sec for a path-level sim with 1 million flows

* Not accurate: no queuing - underestimates short flow FCT

* m3 reduces Parsimon’s mean error (relative to ns-3) from 18.3% to 9.9%

* m3 has 5.7x speed-up over Parsimon, and is 3 orders faster than ns-3

 Extract a compact feature map from the complex workload: 1007 100} r
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m3: ~1200X speedup with only ~10% estimation error 2 ((71-(5)Eg, %8@ 25  Meta production workload
in a 384-rack, 6144-host topology (vs. ns-3) = (50KB, INF) ll - * A 384-racks, 6,144-host Meta’s data center fabric
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From ~10 hours (ns-3) to less than 1 min (m3) s . Baseline: Parsimon
ercentiles
 The feature map distinguishes between workloads in a logical way Init. Window | Methods | p99 | Error Time | Speedup
Two main challenges: Load = 20% Load = 50% Load = 80% ns-3 2.05 } 13.5h -
* Hard to represent the function in a compact way (0. 2508) — 10KB Parsimon | 4.29 | +109% | 1m29s 346X
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