m3: Accurate Flow-Level Performance Estimation using Machine Learning

Predict Network Performance

- Data center network operators need to predict the impact of design choices on network performance (e.g., tail latency, throughput, etc)
- **Simulation** is a common tool to predict network performance Network topology/configs

- Recent work on fast simulation: DeepQueueNet, Parsimon, ...
- All are packet-level simulators -> slow for large-scale networks especially as the networks become larger and faster

Abstract network simulator as a function

- Learn a model approximating the simulator function mapping a network scenario to aggregate performance statistics
- Example: **network tail latency**

m3: ~1200X speedup with only ~10% estimation error in a 384-rack, 6144-host topology (vs. ns-3)

From ~10 hours (ns-3) to less than 1 min (m3)

Two main challenges:

- Hard to represent the function in a compact way
- Slow to generate the training dataset for the ML model

m3 uses (i) path decomposition and (ii) feature extraction from a flow-level simulator to tackle these challenges

Chenning Li*, Arash Nasr-Esfahany*, Kevin Zhao, Kimia Noorbakhsh, Prateesh Goyal, Mohammad Alizadeh, and Thomas Anderson

Path-level Decomposition

m3 decomposes the network topology into independent paths, predicts performance on sampled paths, aggregates results

Assumption: Flows that do not intersect a path have a secondorder effect on the behavior of flows entirely along that path

- Goal: for each path-level simulation, m3 estimates the flow completion time (FCT) distribution of the foreground flows
- **Benefits:** Path-level sims. are easier to learn & enable parallelism, yet produce accurate estimates of network-wide behavior

Workload Featurization

m3 uses ML to estimate the path-level perf. quickly and uses a flow-level simulator to extract compact features for its ML models

- **flowSim: max-min** flow-level simulation
 - **Fast:** <1 sec for a path-level sim with 1 million flows
 - Not accurate: no queuing \rightarrow underestimates short flow FCT
- Extract a compact feature map from the complex workload:
 - Run path-level simulation with flowSim
 - ✓ Summarize per flow FCT slowdown into a feature map

Percentiles

The feature map distinguishes between workloads in a logical way

Massachusetts **Institute of** *<u>Fechnology</u>*

m3's fast path-level simulation using ML

Results

Extensive simulation

- Baseline: Parsimon^[1]

Large-scale simulation

- Meta production workload
- A 384-racks, 6,144-host Meta's data center fabric
- Baseline: Parsimon^[1]

Init. Wi	ndow Method	s p99	Error	Time	Speedup
	ns-3	2.05	-	13.5h	-
10K	B Parsimo	n 4.29	+109%	1m29s	546×
	m3	2.10	+2.44%	37s	1314×
18KB	ns-3	2.44	-	11.9h	-
	B Parsimo	n 2.73	+11.9%	1m24s	510×
	m3	2.30	-5.74%	40s	1071×

[1] Zhao, Kevin, et al. "Scalable tail latency estimation for data center networks." In proceedings of USENIX Symposium on Networked Systems Design and Implementation (NSDI). 2023.

General principle: use a simple reference system to extract features

• Various production workloads based on Meta's data center network

• m3 reduces Parsimon's mean error (relative to ns-3) from 18.3% to 9.9% • m3 has 5.7x speed-up over Parsimon, and is 3 orders faster than ns-3