CurveALOHA:

Non-linear Chirps Enabled High Throughput Random Channel Access for LoRa

> Chenning Li, Zhichao Cao, Li Xiao Michigan State University May @ IEEE INFOCOM'22

Credits to LoRa Alliance https://lora-alliance.org/lorawan-coverage/

Credits to LoRa Alliance https://lora-alliance.org/lorawan-coverage/

ALOHA Collision Probability

- Profile the probability of collision for a given node transmitting a 1-byte message every ten minutes as a function of the network size
 - A spreading factor (SF) of 7, code rate 4/5 and 125kHz bandwidth (BW)

Up to 10% probability of collision with 1000 LoRa nodes

Background on LoRa PHY Layer

PHY Layer: Chirp Spread Spectrum Modulation

- Bandwidth (BW): Fixed-bandwidth Channel, 125, 250, 500 KHz.
- **Spreading Factor (SF):** the amount of spreading code applied to the original data signal, from SF7 to SF12.

Collision with ALOHA

The weak signals are easily overwhelmed by the strong one.

Symbol Error Rate (SER)

- Expected: [0,0,0,0]
- Actual: $[0, b_0, 0, b_0]$ (depends on the peak)

Existing LoRa MAC Design

Low-cost and accurate carrier-sense methods

LMAC MobiCom '20 DeepSense arXiv'19 p-CARMA EWSN '20

Extra Complexity and Cost

Key Idea of CurveALOHA

• Starting from the SF-enabled Logical Channel

• CurveALOHA: Shape-based Logical Channel with the same SF

Key Idea of CurveALOHA

• Different Shapes of Chirps are orthogonal to each other as the Logical Channel for Concurrent Transmission without Collision

- Noise Resilience of Non-linear Chirps
- Collision between different Chirps
- MAC-Layer Design for Chirp Selection
- Implementation & Evaluation

Noise Resilience of Non-linear Chirps

• Non-linear Chirps can also focus the spectral energy to suppress noise

1. Initial frequency offset for Modulation.

2. Dechirp for Demodulation.

- Convex up-chirp $f(x) = x^2$
- Concave up-chirp $f(x) = 2x x^2$

Collision between Different Chirps

Key Observation:

Dechirp with a mismatched base down-chirp will scatter the energy to different frequency. Thus, different chirps provide the opportunity for concurrent transmission.

MAC-Layer Design for Selection

(1): quadratic1— $f(t) = t^2$ (3): quartic1— $f(t) = t^4$

(2): quadratic2— $f(t) = -t^2 + 2t$ (4): quartic2— $f(t) = -t^4 + 4t^3 - 6t^2 + 4t$

• Given a Pool of Non-linear and Linear Chirps, we compute the *SIR threshold* for each collision scenarios with a pair of Chirp Types

Fig. 5. SIR threshold heatmap of 5 chirps with the same SF. Each block indicates the SIR threshold of a reference signal (i.e., row mark) under an interference signal (i.e., column mark). The rectangle denotes the LoRa linear chirps. With a darker color, the block corresponds to a lower SIR threshold.

MAC-Layer Design for Selection

(1):
$$quadratic1-f(t) = t^2$$
 (2): $quadratic2-f(t) = -t^2 + 2t$
(3): $quartic1-f(t) = t^4$ (4): $quartic2-f(t) = -t^4 + 4t^3 - 6t^2 + 4t$

• Problem Formulation:

Given n available logical channels (i.e., $\{C_1, C_2, ..., C_n\}$) when an end node has a packet to transmit at time *t*, it selects one logical channel C(t) to transmit the packet immediately.

- Stateless CurveALOHA-1: No prior knowledge but randomly select C(t)
- Stateful *CurveALOHA-2*: Weight-based Selection of *C(t)* from Prior Transmissions and Existing SIR Threshold Map

Stateful CurveALOHA-2

- Stateful *CurveALOHA-2*: Weight-based Selection of *C*(*t*) from {C1, C2, ..., Cn })
 - Prior Transmissions and
 - Existing SIR Threshold Map

- Initialization: $p_k = \frac{w_k}{\sum_{j=1}^n w_j}$
- Adapt the Weight with the received PDR

 $w_k(m) = w_k(m) \times \tau^{1 - P_k(m)/P_{thres}}$

• Adapt the weight with the SIR Threshold Map

$$w_j(m+1) = w_j(m) \times \delta_j(C_k), for \ j = 1, \dots, n$$

• As a result, we can use local observed network status to optimize channel selection

Implementation

Metric:

- Symbol Error Rate (SER)
- Packet Delivery Rate (PDR)
- Throughput (Symbols/Second)

Baseline:

- Standard LoRaWAN with ALOHA
- LMAC MobiCom '20 (with Reported Statistics)

Non-linear Chirp Pool with the Linear One:

(1): quadratic1— $f(t) = t^2$ (3): quartic1— $f(t) = t^4$

(2):
$$quadratic2-f(t) = -t^2 + 2t$$

(4): $quartic2-f(t) = -t^4 + 4t^3 - 6t^2 + 4t$

Evaluation: Indoor & Outdoor Performance

Fig. 8. Network performance comparison among ALOHA and CurveALOHA on SER, PDR, and throughput for indoor (top) and outdoor (bottom) experiments.

Evaluation: SOTA and Fairness

TABLE I

COMPARISON OF THROUGHPUT GAINS AGAINST ALOHA

Demand (B/s)		1,000	1,500	2,000	2,500	3,000	3,500
	LMAC-2 ^a	$2.22\times$	1.83×	$1.70 \times$	1.76×	1.81×	$1.87 \times$
Cur	veALOHA-2	$2.33 \times$	$2.22 \times$	$2.38 \times$	$2.81 \times$	2.76×	$2.70 \times$

"Results reported in Figure 13a of LMAC [11].

Fig. 9. CDFs of the per-node network performance (demand 1,400 B/s).

Evaluation: Indoor & Outdoor Performance

(b) Participants of CurveALOHA-2

Fig. 11. Participant selection of non-linear chirps in various nodes and packets for CurveALOHA-1/2.

Fig. 12. Achieved throughput vs. various decay factors for CurveALOHA-2 and payload size with demand throughput of 1,400 B/s.

Conclusions & Future Work

5 de

METERING

AGRICULTURE

CurveALOHA Enables High Network Throughput Random Channel Access via Non-linear Chirps

- Non-linear Chirp Selection
- Extend the Orthogonal Coding Space with the SF and BW

Credits to LoRa Alliance https://lora-alliance.org/lorawan-coverage/