WiHF: Enable User Identified Gesture Recognition with WiFi

Chenning Li, Manni Liu, Zhichao Cao

Michigan State University. April 27, 2020 @ IEEE INFOCOM'20

Motivation: Gesture Recognition

Virtual Reality

Security Surveillance

The Robots of Dawn:

Smart Home

"Every time I lift my arm, it distorts a small electromagnetic field that is maintained continuously across the room. Slightly different positions of my hand and fingers produce different distortions and my robots can interpret these distortions as orders. I only use it for simple orders: Come here! Bring tea! and so on."

--- Isaac Asimov, 1983

It brings security concerns without the performer's identify.

K MICHIGAN STATE UNIVERSITY

Motivation: User identification

User identified gesture recognition.

The semantic meaning of diverse gestures & who I am?

Hufu – Authorization of the Troop

Military messages

Authenticate the holder

Motivation: Applications

User identified gesture recognition:

- Access control
- Content recommendation
- VR customization

User identification

The human gait:

- WifiU UbiComp '16
- Wiwho IPSN 16'
- AutoID AAAI 18'

The location-oriented activities:

- WIPIN GLOBECOM '19
- Cong Shi et MobiHoc 17'

Comparable work

WiID

ACM IMWUT '18 & UbiComp '18

- known gesture information
- cumbersome for cross-domain scenarios

WiHF: Problem Statement

Can we identify the performers while conveying the semantic meaning simultaneously?

• Feature design: Recognize gestures while identifying users *simultaneously*.

Preliminary and Observation

Theoretical support:

- The arm gestures are representative for user identification.
 - --- WiID, Ubicomp 18'
- A domain-independent feature for cross-domain scenarios.

--- Widar3.0, Mobisys 19'

WiHF: Problem Statement

Can we identify the performers while conveying the semantic meaning simultaneously?

- Feature design: Recognize gestures while identifying users simultaneously.
- Cross-domain: Unnecessary extra efforts when gestures are performed in new domains.

Preliminary and Observation

The stability across domains:

WiHF: Problem Statement

Can we identify the performers while conveying the semantic meaning simultaneously?

- Feature design: Recognize gestures while identifying users collaboratively.
- Cross-domain: Unnecessary extra efforts when gestures are performed in new domains.
- Computation efficiency: Efficient enough to be running in real time.

Pattern Extraction

To obtain motion change pattern efficiently :

- Derive the spectrogram of denoised WiFi signals using STFT
- Associate the derivative of the spectrogram with motion changes

Derivative derivation of the spectrogram is computation-intensive

0.03

0.02

0.01

Pattern Extraction

Borrow the idea of Seam Carving Problem in computer graphics for content-aware image resizing.

WiHF: Problem Statement

Can we identify the performers while conveying the semantic meaning simultaneously?

- Feature design: Recognize gestures while identifying users collaboratively.
- Cross-domain: Unnecessary extra efforts when gestures are performed in new domains.
- Computation efficiency: Efficient enough to be running. in real time.
- Dual tasks: bootstrap each other by learning collaboratively.

Collaborative Dual-task

Collaborative learning for dual tasks:

Feature splicing using the gradient block layer (slicing factor = 0)
Predict collaboratively while avoiding the loss propagations.

WiHF: Pipeline

- Channel State Information (CSI) Preprocessing.
- Motion change pattern extraction.
- Collaborative dual-task Deep Neural Network (DNN).

Dataset

Widar3.0 public dataset:

- The dataset can be found in <u>http://tns.thss.tsinghua.edu.cn/widar3.0/index.html</u>.
- 9 gestures x 16 users x 75 domains (3 environments x 5 locations x 5 orientations).

• In use: 9 gestures x 9 users x 75 domains .

Feature Dataset Comment

HuFu Mini (HuFuM)Compare the cross-domain gesture recognition with Widar3.0HuFu Extend (HuFuE)Explore the impact of gesture duration on user identificationHuFuExplore the impact of gesture complexity on user identification

Metric:

 $ACC = \frac{TruePositive}{TruePositive + FalsePositive}$ $FAR = \frac{FalsePositive}{FalsePositive + TrueNegative}$ $FUR = \frac{FalseNegative}{FalseNegative + TruePositive}$

Accuracy (in-domain):

- User identification: 96.74%
- Gesture recognition: 97.65%

Cross-domain gesture recognition:

 WiHF achieves comparable performance with the-state-ofthe-art work (Widar3.0 Mobisys19') across domains.

Latency:

• The processing time of WiHF is reduced by 30x.

	Widar3	HuFuM	HuFuE	HuFu
Signal Processing	0.162s	0.992s	1.312s	1.557s
Feature Extraction	70.29s	0.194s	0.358s	0.379s
Total Time Consumption ^a	70.61s	1.462s	2.162s	2.488s
Gesture Duration	1.619s	1.619s	3.238s	3.669s
	1. 1	1		

^aIt includes procedures for loading data, signal processing, feature extraction and recognition & identification.

TABLE 3 Accuracy for the In-domain Testing on HuFu Feature Dataset

User Identification	WiID	WiHF
In-domain	68.95%	96.74%

Comparative study:

• WiHF outperforms WiID for in-domain user identification.

Cross-domain user identification:

- Consistent performance with the observation.
- WiHF suffers severely for edge orientations.

#Gest	ture	6	7	8	9
Gesture Recognition	In-domain	97.65%	96.14%	95.33%	93.11%
	Location	92.07%	85.81%	84.92%	83.81%
	Orientation	82.38%	74.46%	72.72%	74.55%
User Identification	In-domain	96.74%	97.19%	97.29%	95.33%
	Location	75.31%	68.00%	70.65%	71.36%
	Orientation	69.52%	66.43%	68.34%	70.59%
#User		6	7	8	9
Gesture Recognition	In-domain	97.65%	96.17%	96.99%	97.21%
	Location	92.07%	90.94%	91.62%	91.22%
U U	Orientation	82.38%	83.81%	79.62%	80.64%
User	Orientation In-domain	82.38% 96.74%	83.81% 92.56%	79.62% 93.76%	80.64% 94.43%
User Identification	Orientation In-domain Location	82.38% 96.74% 75.31%	83.81% 92.56% 66.98%	79.62% 93.76% 64.70%	80.64% 94.43% 65.26%

^aThe target label denotes the test dataset.

WiHF satisfies the requirements of the smart home scenario.

Conclusions

- WiHF designs a domain-independent motion change pattern of arm gestures and a dual-task network that can recognize gestures and identify users collaboratively.
- WiHF achieves the comparable cross-domain gesture recognition with the state-of-the-art method, but the processing time is reduced by $30 \times .$
- WiHF demonstrates the feasibility of cross-domain user identification but requires sophisticated gesture design.

Chenning Li chenningli2019@gmail.com

"We can only see a short distance ahead, but we can see plenty there that needs to be done."——Alan M. Turing MICHIGAN STATE UNIVERSITY

We can only see a short distance ahead, but we can see plenty there that needs to be done. —— Alan M. Turing ——

👰 MICHIGAN STATE UNIVERSITY