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Motivation: Gesture Recognition
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Smart Home

The Robots of Dawn

"‘Every time I lift my arm, it distorts a small electromagnetic field that is maintained continuously
across the room. Slightly different positions of my hand and fingers produce different distortions
and my robots can interpret these distortions as orders. I only use it for simple orders: Come
here! Bring teal and so on.”

--- Isaac Asimov, 1983

It brings security concerns without the performers identify.
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Motivation: User identification

[ User identified gesture recognition. J

The semantic meaning of diverse gestures & who I am?
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Hufu — Authorization of the Troop

Military messages Authenticate the holder
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Motivation: Applications
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WiFi based User Identification

User identification Comparable work

The human gait: WiIID

«  WifiU UbiComp '16 ACM IMWUT '18 &
«  Wiwho IPSN 16 UbiComp '18

« AutoID AAAT 18

* known gesture information
The location-oriented activities: 9 form

.« WIiPIN GLOBECOM '19 * cumbersome for cross-domain
« Cong Shi et MobiHoc 17’ scenarios
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WIiHF: Problem Statement

Can we identify the performers while conveying the
semantic meaning simultaneously?

 Feature design: Recognize gestures while identifying users
simultaneously.
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Preliminary and Observation

Theoretical support:
The arm gestures are representative for user identification.
--- WIID, Ubicomp 18’
A domain-independent feature for cross-domain scenarios.

--- Widar3.0, Mobisys 19’
Experimental observations: | Motion changes, such as ]
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WIiHF: Problem Statement

Can we identify the performers while conveying the
semantic meaning simultaneously?

 Feature design: Recognize gestures while identifying users
simultaneously.

* Cross-domain: Unnecessary extra efforts when gestures are
performed in new domains.
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Preliminary and Observation

The stability across domains:
Largest period < 70ms

60 4 BLoc#1

| MLoc#a |
| BLoc#5 |

w
o

o

W
o

w
o

Frequency Shift(Hz)
o

Temporal shift

w
S

o
S

400 800 1200 16»00

Time (ms)

o

(i MICHIGAN STATE UNIVERSITY 10



WIiHF: Problem Statement

Can we identify the performers while conveying the
semantic meaning simultaneously?

 Feature design: Recognize gestures while identifying users
collaboratively.

* Cross-domain: Unnecessary extra efforts when gestures are
performed in new domains.

 Computation efficiency: Efficient enough to be running in real time.
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Pattern Extraction

To obtain motion change pattern efficiently :

* Derive the spectrogram of denoised WiFi signals using STFT

* Associate the derivative of the spectrogram with motion changes

Derivative derivation of the spectrogram is computation-intensive
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Pattern Extraction

Borrow the idea of Seam Carving Problem in computer graphics for
content-aware image resizing.
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WIiHF: Problem Statement

Can we identify the performers while conveying the
semantic meaning simultaneously?

 Feature design: Recognize gestures while identifying users
collaboratively.

* Cross-domain: Unnecessary extra efforts when gestures are
performed in new domains.

 Computation efficiency: Efficient enough to be running. in real time.
* Dual tasks: bootstrap each other by learning collaboratively.
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Collaborative Dual-task

Collaborative learning for dual tasks:

Feature splicing using the gradient block layer (slicing factor = 0)
« Predict collaboratively while avoiding the loss propagations.

T

Carving

(

| Input
I

| Path
I

|

[CPypxT,]RxP

N s ¢ s i i

I
I
I
I
I

]

| CNN_GRU Module |

o000 o Sy <
l Feature Gg,(0¢,)
P e
oL, e
| %07 )

-0

S ———————

d

S

Module

\
I
I
I

Feature |
C;fg(gfg) | f—LL —————

—>®-
s

Gradient Block Layer |

CNN cru | \EEEEEREEE
X A

s

T ¢
aL,

— 9 —
a8, )
N

= CLgsg_I

=l
-/\/b —1 Gesture label Y
E Predictor Pg(G o

E Predictor P, (0,,)

E User label y,
]

= r_L;su—l
o [ Wiz
- —
I |
6, )

N — w—

15



WIiHF: Pipeline
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Dataset

Widar3.0 public dataset:

« The dataset can be found in http.//tns.thss.tsinghua.edu.cn/widar3.0/index.html.
« 9gestures x 16 users x 75 domains (3 environments x 5 locations x 5 orientations).

NP &, ® [

75 © 258575  8620.. 325.,

Domain Gesture Duration File Size

« Inuse: 9 gestures x 9 users x 75 domains .

Feature Dataset Comment

HuFu Mini (HuFuM)  Compare the cross-domain gesture recognition with Widar3.0
HuFu Extend (HuFuE) Explore the impact of gesture duration on user identification
HuFu Explore the impact of gesture complexity on user identification
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http://tns.thss.tsinghua.edu.cn/widar3.0/index.html

Evaluation

Metric:
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FalseNegative 4+ TruePositive
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 Gesture recognition: 97.65%
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Evaluation

Cross-domain gesture
recognition:

« WiHF achieves comparable
performance with the-state-of-

the-art work (Widar3.0
Mobisys19’) across domains.

Latency:

» The processing time of WiHF is
reduced by 30x.

Accuracy = Widar3 s HuFuM s HuFuE
100%-
T 1 =
T = -
90%/- ==
b T EH1 = —
80%-
1 —
70%- T
60% - - : - : - : -
Orientation Location Environment In-domain
Widar3 HuFuM  HuFuE HuFu
Signal Processing 0.162s 0.992s 1.312s 1.557s
Feature Extraction 70.29s 0.194s 0.358s 0.379s
Total Time Consumption? 70.61s 1.462s 2.162s 2.488s
Gesture Duration 1.619s 1.619s 3.238s 3.669s
a[t includes procedures for loading data, signal processing,
feature extraction and recognition & identification.
19
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Evaluation

Accuracy for the In-domain Testing on HuFu Feature Dataset C'o m p a rafl‘ve .S'fU dy..

User Identification WilD WiHF

In-domain 68.95%  96.74% o M// HF ou f‘pe/" fOf'm 5' V’// I D fOf'
in-domain user identification.

Accuracy @8 WilD-LOC @8 WiHF-LOC @m WilD-ORI m® WiHF-ORI
90%:- 86.33%

0,
80%; 73.93% 73.44%

Cross-domain user identification:

70%:-
60%:-
50%;
40%:-

* Consistent performance with the

80%. observation.
70%]
60%]

50%;

« WiHF suffers severely for edge
orientations.

40%:

Different users
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Evaluation

#Gesture 6 7 8 9
Gosture In-domain 97.65% 96.14% 95.33% 93.11%
Recognition Location 92.07%  85.81% 84.92%  83.81%
’ Orientation 82.38% 74.46% 72.72%  74.55%
User In-domain  96.74%  97.19%  97.29%  95.33%
Identiﬁcation Location 75310/0 68000/0 70650/0 71360/0
Orientation 69.52%  66.43%  68.34%  70.59%

#User 6 73 8 9
Gesture In—domain 97650/0 96170/0 96990/0 97210/0
Recognition Location 92.07%  90.94% 91.62%  91.22%
Orientation 82.38%  83.81%  79.62%  80.64%
User In-domain 96.74%  92.56% 93.76% 94.43%
Identification Location 7531%  66.98%  64.70%  65.26%
Orientation 69.52%  63.26% 55.86% 57.26%

AThe target label denotes the test dataset.

WiHF satisfies the requirements of the smart home scenario.
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Conclusions

» WiHF designs a domain-independent motion change
pattern of arm gestures and a dual-task network that can
recoghize gestures and identify users collaboratively.

» WiHF achieves the comparable cross-domain gesture
recognition with the state-of-the-art method, but the
processing time is reduced by 30X,

« WiHF demonstrates the feasibility of cross-domain user
identification but requires sophisticated gesture design.
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Thanks!
Q&A

Chenning Li
chenningli2019@gmail.com
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We can only see a short distance
ahead, but we can see plenty there that
needs to be done.

—— Alan M. Turing —
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